##################################################################################### # # # The R code below accompanies to the paper: # # # # Molenaar, D., Rózsa, S., & Kõ, N. (in press) Modeling Asymmetry in the # # Time-Distance Relation of Ordinal Personality Items. Applied Psychological # # Measurement # # # # for questions, please email me: d.molenaar@uva.nl # ##################################################################################### model{ for(p in 1:N){ for(i in 1:nit){ for(j in 1:ncat){ prob[p,j+(i-1)*ncat]<-ilogit(a[i]*(theta[p] - b[i,j])) - ilogit(a[i]*(theta[p] - b[i,j+1])) } dev[p,i]<-a[i]*(theta[p] - (b[i,3]+b[i,4])/2) mu.rt[p,i]<- icept[i] - speed[p] – rho2*dev[p,i] – rho1 * abs(dev[p,i]-delta) lrt[p,i]~dnorm(mu.rt[p,i],prec[i]) x[p,i]~dcat(prob[p,(1+(i-1)*ncat):(ncat+(i-1)*ncat)]) }} for(p in 1:N){ theta[p]~dnorm(0,1) speed[p]~dnorm(0,prec.s) } prec.s~dgamma(.1,.1) for(i in 1:nit){ a[i]~dnorm(0,.1) icept[i]~dnorm(0,.1) prec[i]~dgamma(.1,.1)   for( j in 2:(ncat)){ b[i,j]~dunif(b[i, j-1],b[i, j+1]) } b[i,1]<--1/0 b[i,(ncat+1)]<-1/0 } x1<--1*rho1 rho1~dnorm(0,.1)I(0,) rho2~dnorm(0,.1)I(x1,rho1) delta~dnorm(0,.1) }